A compactness theorem on Branson’s Q-curvature equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactness of conformal metrics with constant Q-curvature. I

We establish compactness for nonnegative solutions of the fourth order constant Qcurvature equations on smooth compact Riemannian manifolds of dimension ≥ 5. If the Q-curvature equals −1, we prove that all solutions are universally bounded. If the Qcurvature is 1, assuming that Paneitz operator’s kernel is trivial and its Green function is positive, we establish universal energy bounds on manif...

متن کامل

On Compactness Theorem

In this talk we investigate the compactness theorem (as a property) in non-classical logics. We focus on the following problems: (a) What kind of semantics make a logic having compactnesss theorem? (b) What is the relationship between the compactness theorem and the classical model existence theorem (CME)/model existence theorem?

متن کامل

On a Nonlinear Integral Equation without Compactness

The purpose of this paper is to obtain an existence result for the integral equation u (t) = φ (t, u (t)) + ∫ b a ψ (t, s, u (s)) ds, t ∈ [a, b] where φ : [a, b]×R → R and ψ : [a, b]× [a, b]×R → R are continuous functions which satisfy some special growth conditions. The main idea is to transform the integral equation into a fixed point problem for a condensing map T : C [a, b] → C [a, b]. The ...

متن کامل

Compactness for Conformal Metrics with Constant Q Curvature on Locally Conformally Flat Manifolds

In this note we study the conformal metrics of constant Q curvature on closed locally conformally flat manifolds. We prove that for a closed locally conformally flat manifold of dimension n ≥ 5 and with Poincarë exponent less than n−4 2 , the set of conformal metrics of positive constant Q and positive scalar curvature is compact in the C∞ topology.

متن کامل

A compactness theorem for a fully nonlinear Yamabe problem under a lower Ricci curvature bound

We prove compactness of solutions of a fully nonlinear Yamabe problem satisfying a lower Ricci curvature bound, when the manifold is not conformally diffeomorphic to the standard sphere. This allows us to prove the existence of solutions when the associated cone Γ satisfies μ+Γ ≤ 1, which includes the σk−Yamabe problem for k not smaller than half of the dimension of the manifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2019

ISSN: 1945-5844,0030-8730

DOI: 10.2140/pjm.2019.302.119